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Abstract In this paper we present a number of classes of solutions of the Einstein’s field
equations with variable G,� and bulk viscosity for a Kaluza-Klein type of cosmological
model. The solutions are obtained by using γ -law equation of state p = (γ − 1)ρ, where
adiabatic parameter γ -varies continuously as the universe expand. A unified description
of the early evolution of the universe is discussed with number of possible assumption on
the bulk viscous term and gravitational constant in which an inflationary phase followed
by radiation-dominated phase. We also investigate the cosmological model with constant
and time dependent bulk viscosity along with constant and time dependent gravitational
constant. In all cases, the cosmological constant � found to be positive and decreasing
function of time which supports the results obtained from recent supernovae Ia observations.
The important physical behaviour of the early cosmological model has also been discussed
in the frame work of higher dimensional space-time.

Keywords Early universe · Gravitational and cosmological constants

1 Introduction

Dirac [1] proposed for the first time the idea of variable G on the certain physical grounds.
Considerable cosmological studies on the early era have been carried out with variable G

[2–9]. On the other hand, present-day astronomical observations indicate [10] that the cos-
mological constant � is extremely negligible being ≤10−56 cm2. But the value of this con-
stant should be 1050 times larger according to the Glashow-Weinberg-Salam model [11] for
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electro-weak unification and 10107 times larger according to GUT [12] for grand unification.
These figures might induce one to infer that � was perhaps very high in the early universe
when electro-weak and grand unification might have occurred, and has been steadily di-
minishing with the passage of time and has become extremely small (practically zero) in
the present era. As might be expected, in the mean time, a number of authors [13–15] have
worked out cosmologies based on time-dependent � in the early universe.

Recently, Carmeli and Kuzmenko [16] have shown that the cosmological relativistic the-
ory predicts the value for cosmological constant � = 1.934 × 10−35 s−2. This value of � is
excellent in agreement with the measurements recently obtained by the High-z Supernovae
Team and Supernovae Cosmology Project. The main conclusion of these observations is that
the expansion of the universe is accelerating. Motivated by dimensional grounds with quan-
tum cosmology, Chen and Wu [13] have considered the variation of cosmological term as
� ∝ R−2. However, a number of authors have argued in favour of the dependence � ∝ t−2.
Berman [14, 17] has discussed the possibility of � ∝ t−2 by adding an additional term to
the usual energy-momentum tensor, resulting in a variable �-term. In an attempt to modify
the general theory of relativity, Al-Rawaf and Taha [18], Al-Rawaf [19] and Overduin and
Cooperstock [20] have proposed a model with � = β( R̈

R
), where β is constant. One of the

motivations for introducing the �-term is to reconcile the age parameter and the density
parameter of the universe with recent observational data.

Cosmological models with time-dependent G, and � in the solutions � ∼ R−2 ∼ t−2,
were first obtained by Bertolami [21, 22] and then number of authors studied in a series of
works [23–32].

On the other hand, cosmological models of a fluid with viscosity play a significant role
in the study of evolution of universe. It is well known that at an early stage of the universe
when neutrino decoupling occurs, the matter behaves like a viscous fluid. The coefficient of
viscosity is known to decrease as the universe expands. Viscous fluid cosmological models
in early universe have been widely discussed in the literatures [33–35].

Murphy [36] has studied perfect fluid cosmological models with bulk viscosity and ob-
tained that the big-bang singularity may be avoided in the finite past. The role of viscosity
in cosmology and its influence on the appearance of the initial singularity have been studied
by a number of authors [37–39]. Santos et al. [40] have derived exact solutions with bulk
viscosity by considering the bulk viscous coefficient as power function of mass density.
Bulk viscosity associated with the grand unified theory (GUT) may lead to an inflationary
cosmology [41, 42]. Bulk viscosity can provide a phenomenological description of quantum
particle creation in a strong gravitational field. Beesham [43] has studied a universe consist-
ing of a cosmological constant � ∼ t−2 and bulk viscosity. Arbab [44, 45] has discussed a
viscous model with variable G and � claiming that energy is conserved. Ram and Singh
[46, 47] have studied early universe with bulk viscosity by using variable adiabatic parame-
ter γ of ‘gamma-law’ equation of state in general relativity and Brans-Dicke’s theory. Singh
[48, 49] and Singh et al. [50] have discussed FRW models with variable G and � by using
variable adiabatic parameter gamma as a function of scale factor R.

The above work motivate one to consider further work in some alternatives theories of
gravitation. In this paper, by considering Kaluza-Klein type cosmological model we present
a number of classes of solutions to the Einstein’s field equations with variable G, � and
bulk viscosity in the context of higher dimensional space-time. We have taken the gamma-
law equation of state, but with variable adiabatic parameter as a function of scale factor and
have obtained many higher dimensional cosmological solutions, which may be important
in describing the early universe. A unified description of the early evolution of universe is
presented with number of possible assumption on the bulk viscous term and gravitational
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constant in which an inflationary phase is followed by radiation-dominated phase. We also
investigate the cosmological model with constant and time-dependent bulk viscosity along
with constant and variable gravitational constant. The effect of viscosity is shown to affect
the past and future of the universe. In all cases the cosmological constant � is found to
be positive and decreasing function of time, which supports the results obtained from the
recent supernovae Ia observations. The important physical behavior of model has also been
discussed in the framework of higher dimensional space-time.

2 Higher Dimensional Model and Field Equations

We consider the Kaluza-Klein type metric

ds2 = dt2 − R2(t)(dx2 + dy2 + dz2) − B2(t)dψ2, (1)

where B(t) and R(t) are the scale factor.
The Einstein field equations with time-dependent cosmological and gravitational con-

stants are given by

Rμν − 1

2
Rgμν = 8πG(t)Tμν + �(t)gμν. (2)

The energy-momentum tensor for viscous fluid can be written as

Tμν = (ρ + p̄)uμuν − p̄gμν, (3)

where ρ is the energy density of the cosmic matter and p̄ is the effective pressure of the fluid.
The effective pressure p̄ is related to the equilibrium pressure p by Banerjee et al. [51]

p̄ = p − ζθ, (4)

where, θ = μa
;a and μaμa = 1, ζ stands for the coefficient of bulk viscosity that determines

the magnitude of viscous stress relative to expansion.
For the metric (1) with energy momentum tensor (3) along with B(t) = Rn, the field

equations (2) yields three independent equations

8πG(t)ρ = 3(n + 1)
Ṙ2

R2
− �(t), (5)

8πG(t)p̄ = −(n + 2)
R̈

R
− (n2 + n + 1)

Ṙ2

R2
+ �(t), (6)

8πG(t)p̄ = −3

(
R̈

R
+ Ṙ2

R2

)
+ �(t), (7)

where dot denotes derivative with respective to t and p̄ = p − (3 + n)ζH .
The above field equations can be expressed as

3(n + 1)
R̈

R
= −8πG(t)

[
ρ + (n + 1)[p − (3 + n)ζH ] − n�(t)

8πG(t)

]
, (8)

3(n + 1)
Ṙ2

R2
= 8πG(t)

[
ρ + �(t)

8πG(t)

]
. (9)



3060 Int J Theor Phys (2008) 47: 3057–3074

After eliminating R̈ from (8) and (9) we get,

[
4ρ + 2(n + 1)p − (n − 1)�

4πG

]
H − 2(n+ 1)(n+ 3)ζH 2 = −

(
Ġ

G
ρ + ρ̇ + �̇

8πG

)
. (10)

The usual energy-momentum conservation relation, T
μν

;ν = 0, leads to

ρ̇ +
[

4ρ + 2(n + 1)p − (n − 1)�

4πG

]
H = 0. (11)

Therefore, (10) yields

2(n + 1)(n + 3)ζH 2 =
(

Ġ

G
ρ + �̇

8πG

)
. (12)

In order to solve the field equations (8)–(12), we assume that the pressure p and the energy
density ρ are related through the ‘gamma-law’ equation of state

p = (γ − 1)ρ, (13)

where γ is the adiabatic parameter. In cosmology, the value of γ is taken to be constant lying
between 0 ≤ γ ≤ 2. In this paper, our aim is to let the parameter γ vary continuously as the
universe expands and study the evolution of universe as it goes through a transition from an
inflationary to a radiation-dominated phase. Carvalho [52] assumed a scale factor-dependent
γ of the form

γ (R) = 4

3

A( R
R∗ )2 + ( a

2 )( R
R∗ )a

A( R
R∗ )2 + ( R

R∗ )a
, (14)

where A is a constant and a is the free parameter related to the power of cosmic time and
lies 0 ≤ a < 1. Here, R∗ is certain reference value such that if R � R∗, inflationary phase
of the evolution of the universe is obtained and for R � R∗, we have a radiation-dominated
phase.

Equations (8) and (9) can be written in terms of the Hubble parameter H = Ṙ
R

, to give,
respectively,

Ḣ + H 2 = − 8πG(t)

3(n + 1)

[
ρ + (n + 1)[p − (3 + n)ζH ] − n�(t)

8πG(t)

]
, (15)

H 2 = 8πG(t)

3(n + 1)

[
ρ + �(t)

8πG(t)

]
. (16)

Substituting (13) into (15), we get

Ḣ + H 2 = −8nπG(t)

3(n + 1)

(
(n + 1)γ

n
− 1

)
ρ + 8(n + 3)πG(t)ζ(t)H

3
+ n�(t)

3(n + 1)
. (17)

Eliminating ρ between (16) and (17), we get the first-order differential equation

Ḣ + [(n + 1)γ + (1 − n)]H 2 = (n + 3)

3
8πG(t)ζ(t)H + �(t)γ

3
. (18)
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Now (18) can be rewritten in the form

H ′ + [(n + 1)γ + (1 − n)]H
R

= (n + 3)8πG(t)ζ(t)

3R
+ γ�(t)

3HR
, (19)

where a prime denotes differentiation with respect to the scale factor R.
We consider a form of � as

� = 3βH 2, (20)

where β = constant.
Using (20) into (19), we finally get

H ′ + [(n + 1 − β)γ + (1 − n)]H
R

= (n + 3)

3

8πG(t)ζ(t)

R
. (21)

The coefficient of bulk viscosity is assumed to be a simple power function of the energy
density [53–55]:

ζ(t) = ζ0ρ
n0 (22)

where ζ0 (≥ 0) and n0 (≥ 0) are constants.
We solve (21) by taking different physical assumptions on G(t) and ζ(t) in the following

sections.

3 Higher Dimensional Model with Constant Coefficient of Bulk Viscosity and G

We assume that G(t) = G and ζ(t) = constant =ζ0 , G 
= ζ0. For this case (21) reduces to

H ′ + [(n + 1 − β)γ + (1 − n)]H
R

= α0ζ0

R
, (23)

where α0 = (n+3)

3 8πG.
After solving (23), we get

HR(1−n)

[
A

(
R

R∗

)2

+
(

R

R∗

)a
] 2

3 (n+1−β)

= α0ζ0

∫ [A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)

Rn
dR + C0,

(24)
where C0 is a constant of integration.

We now solve (24) for two early phases of universe-inflationary and radiation-dominated
phases, respectively.

For inflationary phase (R � R∗), (24) reduces to

H = α0ζ0

b0
+ C0

R(1−n)( R
R∗ )

2
3 a(n+1−β)

, (25)

where b0 = [ 2
3a(n + 1 − β) + (1 − n)].

For radiation phase (R � R∗), we get

H = α0ζ0

b1
+ C0

R(1−n)A
2
3 (n+1−β)( R

R∗ )
4
3 (n+1−β)

, (26)
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where b1 = [ 4
3 (n + 1 − β) + (1 − n)].

If C0 = 0, H has constant value in both phases and therefore we have exponential expan-
sion. Also we get R = RI exp[ α0ζ0t

b1
], � = constant and ρ = constant, where we have chosen

the constant of integration so that, at t = 0, R = RI . At t = −∞, we have R = 0, but the
density is finite, so that one can say that there is no singularity.

When C0 
= 0, for inflationary phase from (25), we get

Rb0 = R
2
3 a(n+1−β)

∗
[

C1 exp(α0ζ0t) − C0b0

α0ζ0

]
, (27)

where C1 is the constant of integration.
If we adjust the constants C0 and C1 such that C0 = C1 = B , where B is another constant,

the above equation reduces to

Rb0 = R
2
3 a(n+1−β)

∗
[
B

(
exp(α0ζ0t) − b0

α0ζ0

)]
. (28)

From (28) the solutions for the other physical parameter are,

H = α0ζ0

b0

[
1 − b0 exp(−α0ζ0t)

]−1
, (29)

� = 3βα2
0ζ

2
0

b2
0

[
1 − b0 exp(−α0ζ0t)

]−2
, (30)

ρ = 3(n + 1 − β)

8πG

α2
0ζ

2
0

b2
0

[
1 − b0 exp(−α0ζ0t)

]−2
. (31)

We observe that the universe starts from a non-singular state, characterized by constant and
finite initial values of R,H,� and ρ. From (30), it is also shown that the cosmological
term is positive and a decreasing function of time (i.e. present epoch) which supports the
results obtained from recent type Ia supernovae observations [56–59]. The models have a
non-vanishing cosmological constant and mass density as t → ∞. It is well known that with
the expansion of the universe, i.e. with the increase of time t , the energy density decreases
and becomes too small to be ignored. The cosmological parameter decreases and in the case
� = 0, we find H = 0, the process of evolution is terminated. We also get the singularity
free model for � = 0. Thus, (28) shows that bulk viscosity alone gives rise to exponen-
tial expansion and is able to remove the initial singularity. Therefore, it is to note that the
inflationary solution can be obtained with or without the cosmological parameter due to a
constant coefficient of bulk viscosity in the context of higher dimensional space-time. In
case where both bulk viscosity and the cosmological constant vanish, the solution is given
by

R = R

2
3 a(n+1)

b0∗ (b0Bt)
1
b0 ,

which exhibits a singularity and reduces to higher dimensional perfect fluid solutions.
An interesting property with bulk viscosity should be noted. If we assume that tc =

(α0ζ0)
−1, (28) can be written as

R = R

2
3 a(n+1−β)

b0∗
(

B

α0ζ0

) 1
b0

[
exp

(
t

tc

)
− b0

] 1
b0

. (32)
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On the other hand, when one is dealing with the radiation-dominated period (R � R∗),
(26) gives

Rb1 = R
4
3 (n+1−β)

∗
[

B

A
2
3 (n+1−β)

(
exp(α0ζ0t) − b1

α0ζ0

)]
. (33)

The other physical parameters have the following expressions:

H = α0ζ0

b1

[
1 − b1 exp(−α0ζ0t)

]−1
, (34)

� = 3βα2
0ζ

2
0

b2
1

[
1 − b1 exp(−α0ζ0t)

]−2
, (35)

ρ = 3(n + 1 − β)

8πG

α2
0ζ

2
0

b2
1

[
1 − b1 exp(−α0ζ0t)

]−2
. (36)

In the radiation-dominated period, the physical interpretation is similar to the case of
the inflationary phase. The bulk viscosity coefficient avoids the singularity. The decel-
eration parameter q = −RR̈

Ṙ2 varies from q = [b2
0 exp(−α0ζ0t) − 1] for R � R∗ to q =

[b2
1 exp(−α0ζ0t) − 1] for the radiation dominated phase. We find that q = [b2

0 − 1] or
q = [b2

1 − 1] as t → 0 and q = −1 as t → ∞, which shows the inflation in the evolution of
universe. The above solutions have been obtained for 0 < a < 1.

Now we study the solution in the limit a → 0 and in this case (24) becomes

HR(1−n)

[
A

(
R

R∗

)2

+ 1

] 2
3 (n+1−β)

= α0ζ0

∫ [A( R
R∗ )2 + 1] 2

3 (n+1−β)

Rn
dR + C0. (37)

4 Higher Dimensional Model with Bulk Viscosity Proportional to a Power Function
of Energy Density and G

Case I ζ = ζ0ρ
n0 and G(t) = G = constant. By using this values of G and ζ and (16), (21)

reduces to

H ′ + [(n + 1 − β)γ + (1 − n)]H
R

= α1ζ0
H 2n0

R
, (38)

where α1 = (n+3)

3 8πG[ 3(n+1−β)

8πG
]n0 .

Solving the above differential equation, we get

1

H 2n0−1[A( R
R∗ )2 + ( R

R∗ )a] 2
3 (2n0−1)(n+1−β)R(2n0−1)(1−n)

= C2 − (2n0 − 1)α1ζ0

∫
dR

R[1+(2n0−1)(1−n)][A( R
R∗ )2 + ( R

R∗ )a] 2
3 (2n0−1)(n+1−β)

, (39)

where n0 
= 1
2 and C2 is an integration constant.
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We solve (39) for two early phases of evolution of universe- inflationary and radiation-
dominated phases. For inflationary phase R � R∗, the expression for the Hubble parameter
is given by

H =
[
C2

[(
R

R∗

) 2
3 a(2n0−1)(n+1−β)

R(2n0−1)(1−n)

]
+ α1ζ0

b0

] 1
(1−2n0)

. (40)

If H = H∗ for R = R∗, a relation between constants is given by

H∗ = 1

[C2[R(2n0−1)(1−n)
∗ ] + α1ζ0

b0
] 1

(2n0−1)

. (41)

When C2 = 0, we obtain H = H∗ and R ∝ exp(H∗t), which represents steady-state model
for all values of n0. It is also observed that � = const; ρ = const and ζ = const. At t = −∞,
we have R = 0, but the density is finite, so that one can say that there is no singularity. We
see that bulk viscosity remains constant during inflationary phase. Depending on the value
of n0, we now proceed to study the more general solution of the model for the three different
cases when C2 
= 0: (a) 2n0 > 1, (b) 2n0 < 1 and (c) 2n0 = 1. Out of the above three cases,
the case (c) is not valid physically.

Case (a) 2n0 > 1. In this case, we have

H = 1

[C2[( R
R∗ )

2
3 a(2n0−1)(n+1−β)R(2n0−1)(1−n)] + α1ζ0

b0
] 1

(2n0−1)

. (42)

We observe that H approaches a finite value as R → 0, which shows the steady-state char-
acteristic of the model. For other values of n0 in the range 2n0 > 1, we get similar charac-
teristics.

Case (b) 2n0 < 1. In this case, relation (40) can be written as

H =
[
C2

[(
R

R∗

)− 2
3 a(1−2n0)(n+1−β)

R−(1−2n0)(1−n)

]
+ α1ζ0

b0

] 1
(1−2n0)

. (43)

Here, C2 = 0 gives the constant value of Ṙ
R

. The model with C2 > 0 explodes from R = 0,
where Ṙ and the energy density both are infinitely large. The Hubble parameter approaches
H∗ asymptotically for large R. Then the universe evolves into a viscosity-dominated steady-
state era. If the coefficient of bulk viscosity decays sufficiently slowly, the late epochs of the
universe will be viscosity dominated, and the universe will enter a final inflationary era with
steady-state character.

Case (c) For the case 2n0 = 1, not valid physically here, but we considered this case later in
Case II.

If the coefficient of the bulk viscosity decays sufficiently slowly, the universe eventu-
ally enters a viscosity-dominated epoch at late times with constant density, i.e. if α1ζ0

b0
�

C2(
R
R∗ )

2
3 a(2n0−1)(n+1−β)R(2n0−1)(1−n), there is exponential expansion. The solution in terms of
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scale factor can be obtained by integrating (40) for H = Ṙ
R

to give

R = exp

[(
α1ζ0

b0

) 1
1−2n0

t

]
= exp(H∗t), (ζ0 
= 0). (44)

On the other hand, when C2[( R
R∗ )

2
3 a(2n0−1)(n+1−β)R(2n0−1)(1−n)] � α1ζ0

b0
, we get

R = R

2
3 a(n+1−β)

b0∗
[

b0

C2
t

] 1
b0

. (45)

The solutions with C2 > 0 are of most physical interest. The scale factor has the form R ∝
t

1
b0 , which shows that the power-law expansion and the effects of viscosity are negligible.

For these models, the other physical parameters in terms of scale factor have the following
expressions:

ρ = 3(n + 1 − β)

8πG
H 2

= 3(n + 1 − β)

8πG

[
C2

[(
R

R∗

) 2
3 a(2n0−1)(n+1−β)

R(2n0−1)(1−n)

]
+ α1ζ0

b0

] 2
(1−2n0)

, (46)

ζ = ζ0

[
3(n + 1 − β)

8πG

]n0
[
C2

[(
R

R∗

) 2
3 a(2n0−1)(n+1−β)

R(2n0−1)(1−n)

]
+ α1ζ0

b0

] 2n0
(1−2n0)

, (47)

� = 3β

[
C2

[(
R

R∗

) 2
3 a(2n0−1)(n+1−β)

R(2n0−1)(1−n)

]
+ α1ζ0

b0

] 2
(1−2n0)

. (48)

For the radiation-dominated phase (R � R∗), (39) gives

H =
⎡
⎣C2

[
A

(
R

R∗

)2
] 2

3 (2n0−1)(n+1−β)

R(2n0−1)(1−n) + α1ζ0

b1

⎤
⎦

1
(1−2n0)

. (49)

If H = H∗ for R = R∗, a relation between constants is given by

H∗ = 1

[C2A
2
3 (2n0−1)(n+1−β)R

(2n0−1)(1−n)
∗ + α1ζ0

b1
] 1

(1−2n0)

. (50)

For C2 = 0, we have Ṙ
R

= constant, which represents a steady state with (R − t) curve as an
exponential one.
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In the radiation phase, if the bulk viscosity decays sufficiently slowly, the universe
eventually enters a viscosity-dominated epoch at late times with constant density, i.e., if
α1ζ0
b1

� C2[A( R
R∗ )2] 2

3 (2n0−1)(n+1−β)R(2n0−1)(1−n), there is exponentially expansion. The solu-

tion in terms of scale factor can be obtained by integrating (49) for H = Ṙ
R

to give

R = exp

[(
α1ζ0

b1

) 1
1−2n0

t

]
= exp(H∗t), (ζ 
= 0). (51)

The Hubble parameter is constant and as t → −∞, R → 0. The universe is infinitely old.
There is no physical singularity, since the energy density assumes a finite value as R → 0.

On the other hand, when C2[A( R
R∗ )2] 2

3 (2n0−1)(n+1−β)R(2n0−1)(1−n) � α1ζ0
b1

, we get

R = R

4
3 (n+1−β)

b1∗

[
b1

C2A
2
3 (n+1−β)

t

] 1
b1

, (52)

which shows power-law expansion of universe and the effects of viscosity are negligible.
The solutions with C2 > 0 are of most physical interest. One can observe that C2 > 0 leads
to an expansion and C2 < 0 to a contraction. According, the universe is expanding or con-
tracting one. The other physical parameters in terms of scale factor are given by

ρ = 3(n + 1 − β)

8πG

⎡
⎣C2

[
A

(
R

R∗

)2
] 2

3 (2n0−1)(n+1−β)

R(2n0−1)(1−n) + α1ζ0

b1

⎤
⎦

2
(1−2n0)

, (53)

ζ = ζ0

(
3(n + 1 − β)

8πG

)n0

×
⎡
⎣C2

[
A

(
R

R∗

)2
] 2

3 (2n0−1)(n+1−β)

R(2n0−1)(1−n) + α1ζ0

b1

⎤
⎦

2n0
(1−2n0)

, (54)

� = 3β

⎡
⎣C2

[
A

(
R

R∗

)2
] 2

3 (2n0−1)(n+1−β)

R(2n0−1)(1−n) + α1ζ0

b1

⎤
⎦

2
(1−2n0)

. (55)

We observe that ρ and � are a decreasing function of time. For C2 > 0, the viscosity coef-
ficient is decreasing to zero for increasing R.

Case II ζ = ζ0ρ
1
2 and G(t) = G. The solutions obtained in Case I are not valid for n0 = 1

2 .
In the case n0 = 1

2 , using (16) and (20) into (21) we get,

H ′ + [(n + 1 − β)γ + (1 − n) − α2]H
R

= 0, (56)

where α2 = [ (n+3)2

3 8πGζ0(n + 1 − β)] 1
2 .

Integrating (56) we get

H = C3R
α3

[A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)

, (57)
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where C3 is an integration constant and α3 = α2 − (1 − n).
If H = H∗ for R = R∗, a relation between constants is given by,

H∗ = Rα3∗
C3

[1 + A] 2
3 (n+1−β)

. (58)

After integrating (57) in terms of scale factor can be written as,

∫ [A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)

Rα3+1
dR = C3t. (59)

The constant of integration has been taken as zero for simplicity. For the inflationary- and
radiation-dominated phases the solution of (59) respectively, given by:
for inflationary phase

Rb2 = [
R

2
3 a(n+1−β)

∗ b2C3t
]
, (60)

and for radiation phase

Rb3 =
⎡
⎣

(
R2∗
A

) 2
3 a(n+1−β)

b3C3t

⎤
⎦ , (61)

where, b2 = [ 2
3a(n + 1 − β) − α3] and b3 = [ 4

3 (n + 1 − β) − α3].
The solutions show the power-law expansion of the model. Their coefficients of viscosity

have the following expressions:
for inflationary phase

ζ = ζ0

(
3(n + 1 − β)

8πG

) 1
2 1

b2
t−1, (62)

and for radiation phase

ζ = ζ0

(
3(n + 1 − β)

8πG

) 1
2 1

b3
t−1. (63)

For the expansion of universe, we must have b2 > 0 for inflationary phase and b3 > 0 for
radiation-dominated phase. The value of β must lie in the interval 0 ≤ β < (n + 1). The
Hubble parameter in terms of scale factor is given by

H = C3R
2
3 (n+1−β)

∗ R−b2 , (R � R∗), (64)

and

H = C3

(
R2∗
A

) 2
3 (n+1−β)

R−b3 , (R � R∗). (65)

The density and cosmological constant of the cosmic fluid are given by

ρ = 3(n + 1 − β)

8πG
H 2 = 3(n + 1 − β)

8πGb2
2

t−2, (66)

� = 3β

b2
2

t−2. (67)
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Singular solutions are found for n0 = 1
2 (i.e. ζ = ζ0ρ

1
2 ) with a power-law expansion of the

scale factor. It is observed that C3 > 0 leads to an expansion and C3 < 0 to a contraction.
The universe is monotonically expanding or contracting. For collapse, the point singularity
is reached in finite time. This is the singularity where R → 0, Ṙ

R
→ −∞ and ρ → ∞. The

energy density and cosmological constant vary inversely as the square of the age of universe
whereas the effect of bulk viscosity decreases linearly as time passes. Thus, the role of bulk
viscosity is more important in early stages of the evolution of universe. The deceleration
parameter varies from q = (b2 − 1) for inflationary phase to q = (b3 − 1) for radiation-
dominated phase. We also observed that the deceleration parameter q is positive for b2 > 1,
negative for b2 < 1 and q = 0 for b2 = 1. Similarly, we may describe the physical behavior
for the radiation-dominated phase.

5 Higher Dimensional Model with Bulk Viscosity Proportional to the Hubble
Parameter and G

We consider ζ = ζ0H and G(t) = G. These relations have already been proposed as phe-
nomenological choice in the physical literature [60, 61].

With the above assumption into (21) and after integrating we get,

H = C4R
α5

[A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)

, (68)

where, α5 = α4 + (n − 1) and α4 = ( n+3
3 )8πGζ0 and its integration leads to the solution for

inflationary and radiation phases as,
for inflationary phase

R[ 2
3 a(n+1−β)−α5] =

[
R

2
3 a(n+1−β)

∗
(

2

3
a(n + 1 − β) − α5

)
C4t

]
, (69)

and for radiation phase

R[ 4
3 (n+1−β)−α5] =

⎡
⎣

(
R2∗
A

) 2
3 (n+1−β) (

4

3
(n + 1 − β) − α5

)
C4t

⎤
⎦ . (70)

The solutions (69) and (70) represent power-law solutions of the model. For (16), the energy
density of the universe is given by

8πGρ = 3(n + 1)H 2 − �. (71)

Using (20) in (71), we obtain

8πGρ = 3(n + 1 − β)H 2. (72)

We observe that the assumption ζ ∼ H is equivalent to ζ ∼ ρ
1
2 . This explains why the

solutions (60), (61) and (69), (70) have the same form. The behavior of the scale factor,
Hubble parameter, cosmological parameter and energy density can be interpreted similarly
as in Case II of Sect. 4. But the solutions of the bulk viscosity are given by:
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for inflationary phase

ζ = ζ0

[ 2
3a(n + 1 − β) − α5]

t−1, (73)

and for radiation phase

ζ = ζ0

[ 4
3 (n + 1 − β) − α5]

t−1, (74)

where, α5 = α4 + (n − 1) and α4 = ( n+3
3 )8πGζ0.

We may describe the physical behavior of the solutions is similar way as we have dis-
cussed in Case II of Sect. 4.

6 Higher Dimensional Model with G Proportional to the Hubble Parameter and Bulk
Viscosity

In this case, we assume

G = G0H and ζ = constant = ζ0. (75)

The relation G ∼ H has already been proposed by Dirac [1] in his large number hypothesis,
which shows that gravitational constant decreases with the age of universe. Using the above
assumptions in (21), we obtain

H ′ + [
(n + 1 − β)γ (R) + (1 − n) − α6

] H

R
= 0, (76)

where, α6 = ( n+3
3 )8πG0ζ0.

Integration of (76) leads to

H = C5R
α7

[A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)

, (77)

where, α7 = α6 + (n − 1) and α6 = ( n+3
3 )8πG0ζ0 and C5 is the integration constant. The

above expression is similar to (57), which shows that the solution for scale factor, cosmolog-
ical constant and energy density has the similar expressions as obtained in Case II of Sect. 4
but with different constant α7. The coefficient of viscosity has been taken as a constant. But
the solutions for gravitational constant are given by

G = G0

[ 2
3a(n + 1 − β) − α7]

t−1, (R � R∗), (78)

and

G = G0

[ 4
3 (n + 1 − β) − α7]

t−1, (R � R∗). (79)

The deceleration parameter varies from q = [ 2
3a(n + 1 − β) − α7 − 1] for (R � R∗) to

q = [ 4
3 (n+ 1 −β)−α7 − 1] for (R � R∗). It follows that q is positive for [ 2

3a(n+ 1 −β)−
α7] > 1, negative for [ 2

3a(n + 1 − β) − α7] < 1 and q = 0 for [ 2
3a(n + 1 − β) − α7] = 1 or
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for [ 4
3 (n + 1 − β) − α7] > 1, [ 4

3 (n + 1 − β) − α7] < 1 and [ 4
3 (n + 1 − β) − α7] = 1 as the

case. The Hubble factor in terms of deceleration parameter can be written as

H = 1

1 + q
t−1, (80)

where the values of Hubble parameter are given by

H = 1

[ 2
3a(n + 1 − β) − α7]

t−1, (R � R∗). (81)

H = 1

[ 4
3 (n + 1 − β) − α7]

t−1, (R � R∗). (82)

We observe that the rate of decrease of constant of gravitation is given by

Ġ

G
= −1

t
. (83)

As t → 0 energy density tends to infinity and the volume tends to zero. Thus, the model
has singularity at t = 0. The cosmological constant varies inversely as the square of the age
of universe, which matches with the natural dimensions. Gravitational constant and energy
density decrease with cosmic time.

Now we study the solution in the limit a → 0, and in this case (78) reduces to

H = C5R
α7

[A( R
R∗ )2 + 1] 2

3 (n+1−β)
. (84)

In the limit of very small value of R, i.e. for (R � R∗), the scale factor is given by

Rα7 = − 1

α7C5
t−1. (85)

One observes that C5 > 0 leads to a contraction. As t → −∞, we find that R → 0. The
model starts from infinite past with zero proper volume. Thus, for a = 0 the universe is
infinitely old and we have inverse power-law. Again, the radiation phase is described by the
solution in the limit R � R∗, that is,

R =
⎡
⎣

(
R2∗
A

) 2
3 (n+1−β) (

4

3
(n + 1 − β) − α7

)
C5t

⎤
⎦

1
( 4

3 (n+1−β)−α7)

, (86)

which shows the power-law expansion of the universe.

7 Higher Dimensional Model with Both Bulk Viscosity and G Proportional to the
Hubble Parameter

In this case, we assume

ζ = ζ0H and G = G0H, (87)
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where ζ0 and G0 are constants and ζ0 
= G0. Substituting (87) into (21), we obtain

H ′ + [(n + 1 − β)γ + (1 − n)]H
R

= α8ζ0
H 2

R
, (88)

where α8 = ( n+3
3 )8πG0. We observe that (88) is similar to (38) with n0 = 1 or ζ = ζ0ρ.

Solving the differential equation (88), we get

1

H [A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)R(1−n)

= C6 −α8ζ0

∫
dR

R[2−n][A( R
R∗ )2 + ( R

R∗ )a] 2
3 (n+1−β)

, (89)

where α8 = ( n+3
3 )8πG0 and C6(≥ 0) is a constant.

The expressions of Hubble parameter for inflationary- and radiation-dominated phases
are, respectively, given by

H = 1

[C6[( R
R∗ )

2
3 a(n+1−β)R(1−n)] + (

α8ζ0
b0

)]
, (90)

H = 1

[C6[( R
R∗ )

4
3 (n+1−β)R(1−n)] + (

α8ζ0
b1

)]
, (91)

when C6 
= 0, the explicit integration of (90) and (91) leads to the following expressions:

α8ζ0

b0
lnR + C6

b0

(
R

R∗

) 2
3 a(n+1−β)

R(1−n) = t + t0, (92)

α8ζ0

b1
lnR + C6

b1

(
R

R∗

) 4
3 (n+1−β)

R(1−n) = t + t1, (93)

where t0 and t1 are integration constants. However, these constants can be taken as zero for
simplicity. Study of asymptotic behavior of (92) or (93) reveals that as t → −∞, R → 0
and as t → +∞, R → ∞. In general, it is not possible to express R explicitly as a function
of time. For sufficiently small R, the first term in (92) or (93) dominates over the second,
containing the viscosity term. The energy density is a decreasing function of time whereas
the cosmological constant is constant in this case. If the second term dominates we get

the power-law expansion R ∝ t
1
b0 or R ∝ t

1
b1 and we observe that the effect of viscosity

coefficient becomes negligible. The model has singularity and the expansion continuously
slows down but never reverses. Now, C6 = 0 gives the steady state solution which all models
approach as t → −∞.

The gravitational parameter and coefficient of bulk viscosity for inflationary- and
radiation-dominated phases in terms of scale factor are given by
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G = G0

[
C6

[(
R

R∗

) 2
3 a(n+1−β)

R(1−n)

]
+ α8ζ0

b0

]−1

, (94)

ζ = ζ0

[
C6

[(
R

R∗

) 2
3 a(n+1−β)

R(1−n)

]
+ α8ζ0

b0

]−1

, (R � R∗) (95)

and

G = G0

[
C6

[(
R

R∗

) 4
3 (n+1−β)

R(1−n)

]
+ α8ζ0

b1

]−1

, (96)

ζ = ζ0

[
C6

[(
R

R∗

) 4
3 (n+1−β)

R(1−n)

]
+ α8ζ0

b1

]−1

, (R � R∗). (97)

It is observed that the gravitational parameter and coefficient of bulk viscosity decrease to
zero as R increases. The deceleration parameter for inflationary phase is found to be

q =
C6(α9 − 1)( Rα9

R

2
3 a(n+1−β)

∗
) − α8ζ0

α9

C6(
Rα9

R

2
3 a(n+1−β)

∗
) + α8ζ0

α9

, (98)

where α9 = [ 2
3a(n + 1 − β) + (1 − n)]. It may be noted that although q is a function of R,

but it becomes a constant q = (α9 − 1) in the absence of viscosity, where q is positive for
α9 > 1, negative for α9 < 1 and q = 0 for α9 = 1. In the presence of bulk viscosity, we get
q = −1 for C6 = 0, which shows the inflation of the universe. If C6 > 0 and α9 = 1, (98)
reduces to

q = −
⎛
⎜⎝

α8ζ0
α9

C6(
Rα9

R

2
3 a(n+1−β)

∗
) + α8ζ0

α9

⎞
⎟⎠ , (99)

which indicates that the model accelerates with q → 0 at the later stage of the evolution. If
C6 > 0 and α9 < 1 then q < 0, which shows that the expansion is accelerated throughout
the evolution. At last if C6 > 0 and α9 > 1, it follows that q is positive for ( Rα9

R

2
3 a(n+1−β)

∗
) >

(

α8ζ0
α9

C6(α9−1)
), negative for ( Rα9

R

2
3 a(n+1−β)

∗
) < (

α8ζ0
α9

C6(α9−1)
) and q = 0 for ( Rα9

R

2
3 a(n+1−β)

∗
) = (

α8ζ0
α9

C6(α9−1)
),

indicating that the expansion is accelerated in the early phase and decelerated in the later
phase of the evolution.

The similar behavior of the deceleration parameter can be obtained for the radiation-
dominated phase.

8 Conclusion

In this paper we have consider Kaluza-Klein type cosmological model with varying gravi-
tational cosmological constant and the bulk viscosity coefficient ζ . We have discussed the
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problem by using the gamma-law equation of state, in which the adiabatic parameter γ de-
pends on scale factor R. We obtained the solution with the assumption � ∝ H 2. For R � R∗,
it enters into a radiation dominated phase and if R � R∗, inflationary phase of evolution of
the universe is obtained. The first period of evolution in each model is described by infla-
tionary phase is followed by radiation dominated phase. All the solution exhibit the feature
of viscous solution with variable G and �. It has been also observed that cosmological con-
stant � is a decreasing function of time and they approach to small positive value as time
increases, which supports the results obtained from the recent Supernovae Ia observations
[2–5].

The concept of viscosity has been used in a generalized way, as an expression of different
dissipative processes that give rise to terms in Einstein’s field equations, which appears in
the energy-momentum tensor of viscous fluid as the coefficient of bulk viscosity. In this
paper, we have concentrated on models with a constant coefficient of bulk viscosity and
models with bulk viscosity coefficient proportional to energy density and Hubble parameter
in the context of higher dimensional space-time. Some of the sections have been devoted
to a variable gravitational constant. We have analyzed the consequences of the inclusion of
such a dissipative term in both inflationary- and radiation-dominated phases of evolution
of universe. The evolution of the universe is qualitatively similar in both phases and we
summarize the main results as follows.

The solutions of the field equations can be expressed in the exact exponential form in
the case of constant coefficient of bulk viscosity and the constant gravitational constant. The
universe starts from non-singular state characterized by constant and finite initial values of
R, H , � and ρ. The bulk viscosity alone may give rise to exponential expansion and is able
to remove the initial singularity in some cases.

In case where the coefficient of bulk viscosity is proportional to energy density and grav-
itational parameter as a constant we get the solution with 0 ≤ n0 ≤ 1

2 display inflationary
behavior similar to the solution in Sect. 3. But the solution with n0 > 1

2 exhibit the defla-

tionary behavior R ∝ t
1
b0 from when t → ∞ which is asymptotically stable, because the

viscous pressure decays faster than the thermodynamic pressure.
If one take the viscosity coefficient to have the general form ζ = ζ0ρ

n0 , then we obtain the
solution for the case n0 > 1

2 and n0 < 1
2 and for n0 = 1

2 we obtained singular cosmological
model. Our results shows that the occurrence of viscosity driven exponential inflationary
behavior depends mainly on the values of n0.

In case of the viscosity coefficient ζ ∝ H and G is constant the solutions of the bulk
viscosity in both the phases is inversely proportional to time. We also observed that ζ ∼ H

is equivalent to ζ ∼ ρ
1
2 and in case, G ∝ H and ζ is constant, we get Hubble parameter H is

inversely proportional to t for both the phases. In Sect. 7, ζ ∝ H and G ∝ H , it is observed
that the gravitational parameter and bulk viscosity decreases to zero as R increases.
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